About some infinite family of 2-bridge knots and3-manifolds

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

About Some Infinite Family of 2-bridge Knots and 3-manifolds

We construct an infinite family of 3-manifolds and show that these manifolds have cyclically presented fundamental groups and are cyclic branched coverings of the 3-sphere branched over the 2-bridge knots ( +1)2 or ( +1)1, that are the closure of the rational (2 −1)/( −1)–tangles or (2 −1)/ –tangles, respectively.

متن کامل

Bi-twist Manifolds and Two-bridge Knots

We give uniform, explicit, and simple face-pairing descriptions of all the branched cyclic covers of the 3–sphere, branched over two-bridge knots. Our method is to use the bi-twisted face-pairing constructions of Cannon, Floyd, and Parry; these examples show that the bi-twist construction is often efficient and natural. Finally, we give applications to computations of fundamental groups and hom...

متن کامل

The Kauffman Polynomials of 2-bridge Knots

The 2-bridge knots (or links) are a family of knots with bridge number 2. A 2bridge knot (link) has at most 2 components. Except for the knot 85, the first 25 knots in the Rolfsen Knot Table are 2-bridge knots. A 2-bridge knot is also called a rational knot because it can be obtained as the numerator or denominator closure of a rational tangle. The rich mathematical aspects of 2-bridge knots ca...

متن کامل

Genus one 1-bridge knots and Dunwoody manifolds

In this paper we show that all 3-manifolds of a family introduced by M. J. Dunwoody are cyclic coverings of lens spaces (eventually S), branched over genus one 1-bridge knots. As a consequence, we give a positive answer to the Dunwoody conjecture that all the elements of a wide subclass are cyclic coverings of S branched over a knot. Moreover, we show that all branched cyclic coverings of a 2-b...

متن کامل

Uniqueness of bridge surfaces for 2-bridge knots

Any 2-bridge knot in S has a bridge sphere from which any other bridge surface can be obtained by stabilization, meridional stabilization, perturbation and proper isotopy.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences

سال: 2000

ISSN: 0161-1712,1687-0425

DOI: 10.1155/s0161171200003422